Using the experimentally determined components of the overall rotational diffusion tensor to restrain molecular shape and size in NMR structure determination of globular proteins and protein-protein complexes.

نویسندگان

  • Yaroslav Ryabov
  • Jeong-Yong Suh
  • Alexander Grishaev
  • G Marius Clore
  • Charles D Schwieters
چکیده

This paper describes an approach for making use of the components of the experimentally determined rotational diffusion tensor derived from NMR relaxation measurements in macromolecular structure determination. The parameters of the rotational diffusion tensor describe the shape and size of the macromolecule or macromolecular complex, and are therefore complementary to traditional NMR restraints. The structural information contained in the rotational diffusion tensor is not dissimilar to that present in the small-angle region of solution X-ray scattering profiles. We demonstrate the utility of rotational diffusion tensor restraints for protein structure refinement using the N-terminal domain of enzyme I (EIN) as an example and validate the results by solution small-angle X-ray scattering. We also show how rotational diffusion tensor restraints can be used for docking complexes using the dimeric HIV-1 protease and the EIN-HPr complexes as examples. In the former case, the rotational diffusion tensor restraints are sufficient in their own right to determine the position of one subunit relative to another. In the latter case, rotational diffusion tensor restraints complemented by highly ambiguous distance restraints derived from chemical shift perturbation mapping and a hydrophobic contact potential are sufficient to correctly dock EIN to HPr. In each case, the cluster containing the lowest-energy structure corresponds to the correct solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Protein Complexes in Muscular Atrophy Using Interaction Map Analysis

Background and purpose: Muscular atrophy is a condition derived from different diseases and aging. Molecular study of the disease condition can help in developing diagnostic methods and treatment approaches. In this study, protein interaction network was analyzed to understand molecular events at protein levels. Materials and methods: In this experimental study, the network was constructed and...

متن کامل

In vitro study of drug-protein interaction using electronic absorption, fluorescence, and circular dichroism spectroscopy

In the near future, design of a new generation of drugs targeting proteins will be required. Considering the complex bond between the drug and protein, the structure and stability of the target protein should be considered. So far, a series of in vitro investigations have been conducted with the aim of predicting drug-biological medium interactions. In these studies, use of spectroscopic method...

متن کامل

HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations.

The heteronuclear NMR relaxation of globular proteins depends on the anisotropic rotational diffusion tensor. Using our previous developments for prediction of hydrodynamic properties of arbitrarily shaped particles, by means of bead models, we have constructed a computational procedure to calculate the rotational diffusion tensor and other properties of proteins from their detailed, atomic-lev...

متن کامل

SEPARATION OF NONHISTONE HIGH MOBILITY GROUP (HMG) FROM HUMAN LYMPHOCYTES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

The high mobility group (HMG) of nonhistone proteins have been investigated using two high performance liquid chromatographic techniques (HPLC). Reversed-phase HPLC under conditions of 50 mM triethylamine adjusted to pH 2.2 with phosphoric acid (solvent A) and 95% acetonitrile in water (solvent B) was used to separate proteins primarily on the basis of differences in the overall hydrophobi...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 27  شماره 

صفحات  -

تاریخ انتشار 2009